Vortex Technology Optimizes Alkylyte Production at Refineries

RESULTS
• Eliminated unscheduled shutdowns
• Increased measurement reliability
• Reduced number of potential leak points
• Reduced maintenance costs

APPLICATION
Sulfuric acid to hydrocarbon feed ratio control to produce high-quality gasoline components (alkylates)

APPLICATION CHARACTERISTIC
Fluid: Isobutane/Olefin feed, Flow: 1,000–14,000 BPD, Temperature: 40 °F (4.4 °C), Pressure: 90 psig (6.2 bar)

CUSTOMER
A North American Refinery

CHALLENGE
This refinery had been experiencing plugging/clogging of their DP orifice plates during the Alkylation process. They wanted to ensure safety by avoiding a potential explosion due to high temperatures in the alkylation process, and decrease downtime due to maintenance.

The alkylation process mixes an isobutane stream and olefin feed with a stream of sulfuric acid. Alkylation units in refineries produce alkylates, which are blended with straight-chain alkanos to adjust the octane rating of gasoline. The mixture is chilled to 40 °F (4.4 °C) and fed to two parallel reactors. The chemical reaction is highly exothermic, and runaway high temperatures may cause an explosion. To control temperature in the reactors, the system manipulates the flow rate ratio of the hydrocarbon and sulfuric acid feeds.

High reliability and low downtime are key equipment requirements in a refinery process like sulfuric acid alkylation. To optimize the process, measurements must be available at all times. Maintenance due to plugging/clogging of impulse lines or ports is unacceptable. In addition, minimizing the exposure of personnel to hazardous acids is critical to increasing safety.
Rangeability is especially pertinent to alkylation units because there is a significant seasonal change in flow rates to produce summer-grade and winter-grade gasoline. Because of the physical nature of the feed, plugging of DP/orifice plate impulse lines by crystalline precipitates often occurs. The plugging caused loss of measurement, high maintenance costs, and was responsible for process downtime. Vibration and fluid pulsation also make the measurement difficult and often require expensive pipe braces.

SOLUTION

The Rosemount 8800 Vortex Flowmeter crevice and port-free design make it immune to clogging from precipitates. The customer reported maintenance-free operation since installation in 1994 and made contingency plans to brace the pipes feeding the reactors. They had experienced problems with vibration and fluid pulsation on the sensor with previously installed meters.

The 8800 start-up went smoothly. The mass-balanced design and Adaptive Digital Signal Processing (ADSP) filtered out noise signals, and no braces were needed. The meters were installed with the factory-default configuration for filters, which resulted in trouble-free operation.

Due to the installation of the 8800 Vortex Flowmeter, the customer has eliminated downtime, increased measurement reliability, reduced the number of potential leak points, and reduced maintenance costs.

RESOURCES

Emerson Process Management Petroleum Refining Industry

Rosemount Vortex Flowmeters

The contents of this publication are presented for information purposes only, and while effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, expressed or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which can be found at www.rosemount.com/terms_of_sale. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.

The Emerson logo is a trade mark and service mark of Emerson Electric Co. Rosemount and the Rosemount logotype are registered trademarks of Rosemount Inc. PlantWeb is a registered trademark of one of the Emerson Process Management group of companies. All other marks are the property of their respective owners.